ISO-CADICA: Isotopic – continuous, automated dissolved inorganic carbon analyzer

ISO-CADICA: Isotopic – continuous, automated dissolved inorganic carbon analyzer

Authors: 
A. Bass, M. Bird, N. Munksgaard, C. Wurster

Rapid Communcations in Mass Spectrometry http://dx.doi.org/10.1002/rcm.6143


Abstract: 

RATIONALE

Quantifying the processes that control dissolved inorganic carbon (DIC) dynamics in aquatic systems is essential for progress in ecosystem carbon budgeting. The development of a methodology that allows high-resolution temporal data collection over prolonged periods is essential and is described in this study.

METHODS

A novel sampling instrument that sequentially acidifies aliquots of water and utilises gas-permeable ePTFE tubing to measure the dissolved inorganic carbon (DIC) concentration and δ13CDIC values at sub-hourly intervals by Cavity Ring-down spectrometry (CRDS) is described.

RESULTS

The minimum sensitivity of the isotopic, continuous, automated dissolved inorganic carbon analyser (ISO-CADICA) system is 0.01 mM with an accuracy of 0.008 mM. The analytical uncertainty in δ13CDIC values is proportional to the concentration of DIC in the sample. Where the DIC concentration is greater than 0.3 mM the analytical uncertainty is ±0.1 ‰ and below 0.2 mM stability is < ± 0.3 ‰. The isotopic effects of air temperature, water temperature and CO2 concentrations were found to either be negligible or correctable. Field trials measuring diel variation in δ13CDIC values of coral reef associated sea water revealed significant, short-term temporal changes and illustrated the necessity of this technique.

CONCLUSIONS

Currently, collecting and analysing large numbers of samples for δ13CDIC measurements is not trivial, but essential for accurate carbon models, particularly on small scales. The ISO-CADICA enables on-site, high-resolution determination of DIC concentration and δ13CDICvalues with no need for sample storage and laboratory analysis. The initial tests indicate that this system can offer accuracy approaching that of traditional IRMS analysis. Copyright © 2012 John Wiley & Sons, Ltd.