Method for flux and isotopic measurements from soil chambers using cavity ring-down spectroscopy (CRDS)

Gregor Lucic¹, David Kim-Hak¹, Renato Winkler¹ 1- Picarro Inc., 3105 Patrick Henry Drive, Santa Clara, California, USA

1. INTRODUCTION

- Cavity Ring-Down Spectroscopy (CRDS) is a powerful tool for the determination of soil fluxes because it enables rapid, concurrent, highprecision measurements of multiple compounds and their isotopologues.
- Quantifying the flux of key elements (C, O, H, N) from a variety of sources and sinks has never been easier, due to the portability and modularity of the CRDS-Soil Chamber methodology.
- We present a series of methodology and research highlights that demonstrates how these system may be deployed in the field.

2. MODULARITY

Picarro Analyzer

The G2000, G4000 and G5000 family of Picarro (CRDS) analyzers may be used to collect concentrations of multiple gas species $(CO_2, CH_4, N_2O, NH_3, H_2O)$, and others) and isotopologues (iCO₂, iCH_4 , iH_2O , iN_2O and iO_2). In many cases at the same time, with high levels of precisions, low drift and strong interference corrections.

Commercial or Homemade Chambers

Chamber selection is not limited to commercial brands (LI-COR, Eosense), but may entail the use of custom-made chambers of variable complexities. With either, multiple-chamber deployments via multiplexers are supported.

CONTACT DETIALS Gregor Lucic (Ph.D), Application Scientist, Picarro Inc. glucic@picarro.com

LI-COR IRGA '_ower-flow rat recirculating flow Picarro Analyzer For more, see LI-COR App Note 13 Picarro Analyzer PICARRO For more, see Eosense App Note AN00 **Discrete Sampling** Collect and analyze discrete, 20 ml headspace samples for concentration and/or isotopic data. PICARRO **Advanced Gas Chemistry** Custom carrier gases and isotopic enrichment studies.

5. CASE STUDY – TEXAS A&M

Objective: Investigate the effect of agricultural management practices (tillage and cover cropping) on greenhouse gas emissions from soil in corn, sorghum and soybean organic cropping systems in Texas

Summary

- In 2017, significant differences in soil CO₂ flux were observed between treatments; however m 3 minute measurement time that we used per chamber was inadequate to capture N_2O and CH₄ fluxes
- In 2018, measurement time/chamber was increased to 10 minutes which is sufficient to capture N₂O and CH₄ fluxes from the treatment plots

For more information please contact Prof. Nithya Rajan, Dept. of Soil and Crop Sciences, Texas A&M University, E-mail: nrajan@tamu.edu

6. SUMMARY AND CONCLUSIONS

- will enrich present and future soil flux studies.

POSTER: **EGU2018-11012** PICARR0

In this setup, eight Li-COR long-term chambers are connected to a Picarro G2508 analyzer housed inside a trailer in the field

> Figure 1 - Half-hourly soil CO₂ flux measured in the 2017 growing season (April – July) from corn, sorghum and soybean plots under conventional tillage with and without cover crops.

dC/dt			SE of dC/dt	R ²	<u>Flux</u>		Flux CV	
Exponential: 0.000431148			5.85108e-06	0.89693	0.00317454		1.7128	
Linear: 0.000403565			2.26174e-06	0.984599	0.984599 0.00297145		1.18579	
ails Guidance								
0.5	5							
<u>≥</u> 0.	5							$\left \right $
o ^l 0.4	5							$\left\ \right\ $
2 _{0.}	4							$\left\ \right\ $
0.3	5							$\left \right $
0.	3]							
-100 0 100 200 300 400 500 600								
t (secs)								

Figure 2 - N_2 O flux from a single chamber.

• The pairing of CRDS technology with commercial and/or homemade flux solutions opens doors to new types of research and datasets.

• The portability of this technology, paired with its ability to make highprecision, multiple-species and isotopic measurements at the same time