

Capturing the urban plume using aircraft observations

Colm Sweeney, Paul B. Shepson, Marc Fischer, Anna Karion, Tom Guilderson, Maria Cambaliza, Jocelyn Turnbull, Kenneth J. Davis, Kevin Robert Gurney, Ian Faloona, John Miller, Scott Lehman, Ben Miller, Natasha Miles, Scott Richardson, Thomas Lauvaux

Advantages of the aircraft

- Aircraft are an efficient way to survey an urban plume of greenhouse gases above and below the boundary layer.
- Aircraft allow exploration of point sources that may not be easily identified by ground-based measurements of greenhouse gases.
- Aircraft wind, temperature and RH measurements can be used to evaluate transport models.

Disadvantage of the aircraft

Seasonal, weekly and diurnal variability make it impossible to use only aircraft

Indianapolis FLUX experiment

Indianapolis

- March 28, 2008
- April 2, 2008
- April 14, 2008
- April 15, 2008
- April 21, 2008
- November 23, 2008
- December 20, 2008
- January 7, 2009
- Upwind and downwind legs to flights
- Upwind legs wasted too much time
- Better to fly outside plume on downwind legs

Indianapolis

April 21, 2008

CO₂ measurements clearly indicate that there is a signal of 10 ppm.

Methane

measurements show likely point sources.

- Important constraint on plume dispersion
- Suggest mean back trajectory

Mays et al 2009

CO_2

 CH_4

Date	CO ₂ Flux (µmole/m²s)	CH₄ Flux (µmole/m²s)	Vulcan C Flux (μmole/m²s)
March 28	9.02 +/- 0.80	0.0063 +/-0.0011	17.45
April 2	7.89 +/- 0.66	0.068 +/- 0.0016	18.70
April 14	24.36 +/- 1.05	0.13 +/- 0.0041	15.87
April 15	51.86 +/- 0.83	0.16 +/- 0.0044	15.10
April 21	5.93 +/- 0.48	0.22 +/- 0.0036	15.5
Nov 23	6.60 +/- 2.77	0.071 +/- 0.010	12.36
Aean +/- 1σ	17.61 +/- 18.14	0.11 +/- 0.076	15.83 +/- 2.17

INFLUX 1

Strengths:

• Background and urban signal for CO₂ and CH₄ signal was easily detectable and well defined.

Weakness:

- Unclear what part of the plume was due to respiration/photosynthesis and what part was due to fossil fuel.
- Transport was not well known and led to large errors in CO₂

Sacramento Study New Assets

Cessna 165

12 flask package

Walnut Grove Tower

•The ability to Sampling for ¹⁴CO₂

•The ability to make continuous measurements at a tower

 Focus on understanding point sources

Flight map exploring point sources

Mission Focus:

To understand and identify point sources that might effect measurements around the Walnut Grove Tower (WGC)

Posters: Anna Karion (I – 196) Jocelyn Turnbull (I – 203)

Sacramento Valley Urban Plume

Marc Fischer, LBL

Sacramento Valley Urban Plume – Natural respiration is important

The variability in natural carbon suggests variability in uptake and respiration that correlates with the urban plume.

Fossil Fuel CO₂ v. Halocarbons Proxies for ¹⁴CO₂

Methane

Benzene

Acetylene

Propane

Flight map

Delta Region:

To understand and identify point sources that might effect measurements around the Walnut Grove Tower (WGC)

Sacramento Valley Urban Plume

Sacramento Valley Delta Region

Delta Region shows less significant correlation with CO but in context of Urban plume the ratio of CO/C_{ff} are very consistent.

Karion et al. 2011

Fossil Fuel CO₂ v. Halocarbons Proxies for ¹⁴CO₂

Methane

Propane

Benzene

Acetylene

INFLUX 2

Funded by

Paul B. Shepson¹, Maria Cambaliza¹, Ken Davis², Kevin Gurney^{1,4} Thomas Lauvaux², Natasha Miles², Gabrielle Petron³, Scott Richardson² Colm Sweeney³, Jocelyn Turnbull³, You⁴

> ¹Purdue University ²Penn State ³NOAA ⁴Arizona State University

Merging Assets

Combining models, inventories and multi – tracer atmospheric measurements

- 1. Aircraft-based measurements
 - CO₂, CH₄
 - 20 flights a year
- 2. Tower-based measurements
 - CO_{2} , CH_{4} and CO
 - 11 towers (75 100m tall)
- 3. ¹⁴C measurements, both towers and aircraft.
 - Includes ¹³CH₄, Halocarbons etc.
- 4. Regional modeling/inverse analysis-
 - WRF-CHEM- 2km x 60 levels (40 levels in BL).
- 5. Vulcan/Hestia modeling.
 - 10 km to building resolution for Indianapolis

- Site 01: CO2/CH4/CO Flasks, PROFILE, "Rural"
- Site 02: CO2/CH4/CO Flasks, PROFILE, "Urban"
- Site 03: CO2/CH4/CO (2 instruments) Flasks, PROFILE
- Site 04: CO2/CO, Flasks
- Site 05: CO2/CO, Flasks
- Site 06: CO2/CH4
- Site 07: CO2/CH4 PROFILE
- Site 08: CO2
- Site 09: CO2
- Site 10: CO2
- Site 11: CO2

INFLUX 2 Tower Sites

Combining measurements and Models Integrating samples

- Reduce representation error by collecting a sample over similar time scales as the transport.
- Sample is collected over hour with varied flow rates to ensure that the air collected in the first minute has the same weight as the air collected in the last minute.

Conclusion

Aircraft play a critical role in measuring urban plumes for the following reasons:

- Ideal for identifying point sources
- Can provide synoptic picture of the urban plume
- Can provide validation for transport models which includes plume dispersion and boundary layer height.