The *airbubbl*, a portable air cleaner, efficiently removes formaldehyde and other pollutants from vehicle cabins. Picarro's Cavity Ring-Down spectrometer enables monitoring formaldehyde removal continuously at the ppt level.

Monitoring the efficiency of a portable air cleaner for

formaldehyde removal with a Cavity Ring-Down Spectrometer

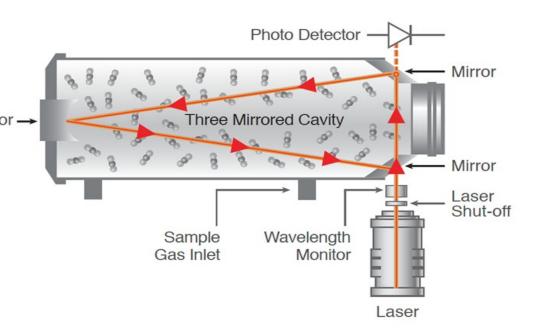
M. E. G. Hofmann^{1*}, James Bonomaully², Hasse Knap², Hugo Russell², Matthew Johnson^{2,3} ¹*Picarro, Inc., Willemsplein 2, 's-Hertogenbosch, The Netherlands* * Contact: mhofmann@picarro.com ²Airlabs, Lersø Parkallé 107, Copenhagen, Denmark ** Contact: hugo.russell@airlabs.com ³University of Copenhagen, Universitetsparken 5, Copenhagen, Denmark

MATERIALS

Abbreviated Name	Material Description	
CAC	AC beads	
IAC_2	CAC beads treated with para-aminobenzoic acid	
CCF_1	Treated AC granules mounted on a HEPA style filter	
CCF_2	Treated AC granules mounted on a HEPA style filter	
AC_COMP_1	Treated AC pellets	
AC_COMP_2	AC composite material	

INTRODUCTION

- The air quality inside vehicles is affected by the intake of polluted air and by outgassing of fabrics.
- Airlabs developed a portable air cleaner, the *airbubbl*, to remove particulate matter, NO₂ and other pollutants from air. A new filter was designed to also remove formaldehyde.
- Here, we present the performance of the new formaldehyde filter, also in comparison to a range of different adsorbents and catalysts.


INSTRUMENTATION

CRDS Technology and Picarro G2307 Analyzer

Cavity Ring-Down Spectroscopy (CRDS) Technology utilizes the unique infrared absorption spectrum of gasphase molecules to continuously measure the concentration of trace gases, like formaldehyde (CH_2O). G2307 Features:

- Direct measurement, no wet chemistry for continuous and in-situ analysis
- ppt level of precision for [CH₂O]
- High stability for low calibration frequency
- Instrument validation with CH₄ as surrogate gas
- SilcoNert coated cavity and Teflon coated sample handling

G2307 Performance Specifications:

CIF_1	Treated AC beads mounted on to polymer foam
CIF_2	CAC beads treated with AL method
M_CAT_4	Metal oxide catalyst based on MnO ₂
CAT_2	Gold nanoparticle catalyst with a TiO ₂ support

RESULTS

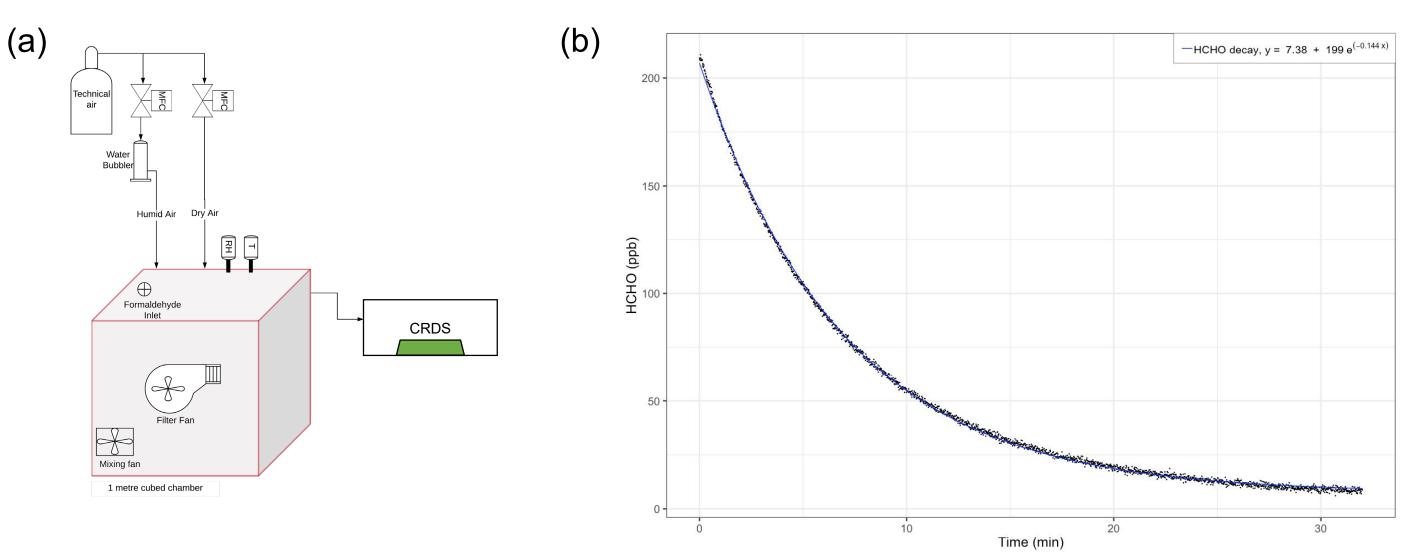
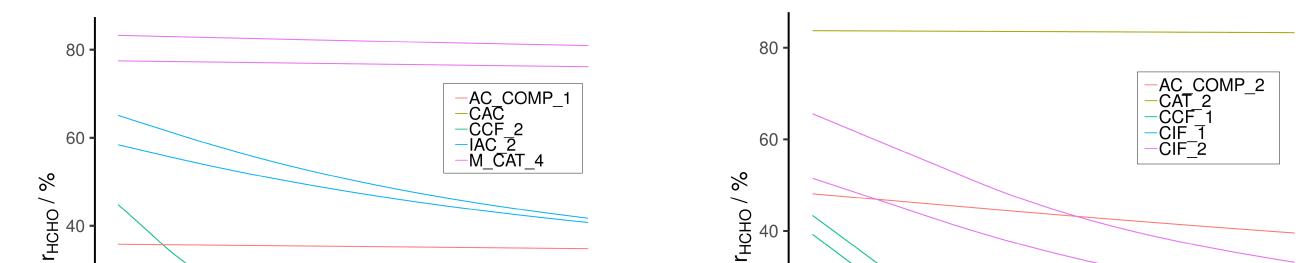



Fig. 1: (a) Chamber test setup. (b) Formaldehyde removal by an *airbubbl* containing a cartridge consisting of an inner layer of 2 cm Airlabs ENC filter combined with an outer layer of 1 cm M_CAT_4 formaldehyde removal catalyst, tested at 35% relative humidity.

G2307 Performance Specifications	H ₂ CO	CH ₄	H ₂ O
Lower Detection Limit (3σ, 300 sec)	0.3 ppb	6 ppb	-
Zero Drift (24 hrs) (peak-to-peak, 50-minute average)	1.5 ppb	-	-
Precision (1 σ , 2 sec) Precision (1 σ , 10 sec) Precision (1 σ , 300 sec)	1.2 ppb + 0.1% of reading 0.6 ppb + 0.05% of reading 0.1 ppb + 0.02% of reading	20 ppb + 0.2% of reading 10 ppb + 0.1% of reading 2 ppb + 0.05% of reading	10 ppm + 0.1% of reading - -
Measurement Interval	<2 sec	-	-
Accuracy	±10%	±2%	±5%
Response Time (0-20 ppb)	Fall time 90–10% : <1min Rise time 10–90% : <1 min	-	-
Measurement Range	0-30 ppm	0-20 ppm	0-3%

METHOD

Two experimental setups were used in the study: A 1 m³ chamber for chamber removal tests (see Fig. 1) and a column for single-pass removal measurements (see Fig. 2). The experiments were designed to mimic realistic environmental conditions for a filter used in an air cleaner targeting ambient air pollution.

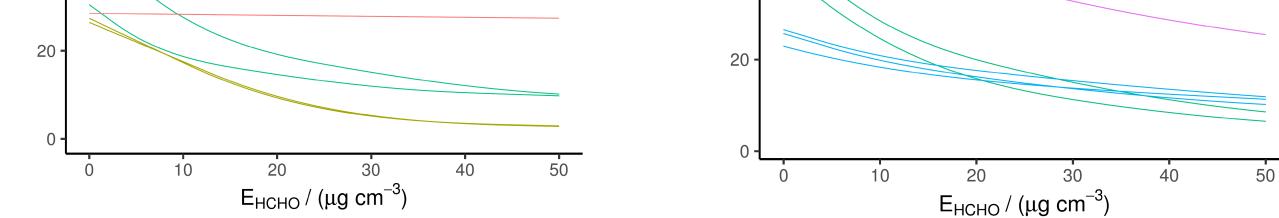


Fig. 2: Removal efficiency for formaldehyde in percent as a function of cumulative exposure, per volume of filter material. Tests were conducted at a relative humidity of $50 \pm 2\%$ and inlet $[H_2CO]$ of 160±10ppb, with 0.4g of material. Experiments were performed in a capacity test setup.

CONCLUSIONS

- The high time resolution and response time of the Picarro G2307 gas analyzer allowed easy testing of the different filter materials under various conditions.
- The gold nanoparticle catalyst (CAT_2) showed the highest performance for formaldehyde removal.

Interested in learning more?

- Contact Magdalena Hofmann (<u>mhofmann@picarro.com</u>) and Hugo Russell (hugo.russell@airlabs.com)
- Visit <u>www.picarro.com</u> and <u>www.airbubbl.com</u>

Scan me

breathe better