PICARRO

Empowering research with precision, reliability, and advanced technology

Agenda

	Mercredi 23 Avril	Jeudi 24 Avril
AASQA	Corse, Atmo SUD, AirPL, Atmo BFC,	AURA, HDF, Atmo GE, Atmo
	Atmo Occitanie, Martinique	normandie, LigAIR, Air Breizh
9h30-10:30h	 Accueil 	 Accueil
	 Présentation Picarro 	 Présentation Picarro
	 Exemples Applications NH₃ 	 Exemples Applications NH₃
10:30h-11h	Pause	Pause
11h-12h	CRDS TechnologieConsidération ApplicationQuestions	CRDS TechnologieConsidération ApplicationQuestions
12h-13h	Pause Déjeuner	Pause Déjeuner
13h-14h	Formation pratique :	Formation pratique :
	G / PI2103 Logicielle	G / PI2103 Logicielle
14h-15h	Formation pratique:	Formation pratique:
	G / PI2103 « Hardware »	G / PI2103 « Hardware »
15h-15h30	Pause	Pause
15h30-17h	Discussion et Question Générale	Discussion et Question Générale

Meet the Picarro EMEA team

Peter SwinkelsAssociate Director, Sales EMEA

Alexandre Dembicki
Technical Sales Manager

Erik HeerenSenior Account Manager

Magdalena Hofmann Senior Application Scientist

Jan Woźniak
Senior Field Application
Scientist

Arthur SchaepsManager, Customer Support

Saeid BagheriTechnical Support Engineer

Rob van der Vleuten Technical Support Engineer

Wei WeiField Service Engineer

Overview Picarro Analyzers

GHG analysis

G2301 : CO₂, CH₄, H₂O

G2311-f: CO₂, CH₄, H₂O (flux) G2401 : CO₂, CH₄, CO, H₂O

G2401-m: CO₂, CH₄, CO, H₂O (flight)

PI5310: N₂O, CO, H₂O

G2508: N₂O, CO₂, CH₄, (NH₃), H₂O G2509: N₂O, CO₂, CH₄, NH₃, H₂O

Suitable for concentration analysis in the atmosphere. Analyzers are optimized for atmospheric concentrations.

Trace gas analyses

PI2103: NH₃, Ammonia

PI2114: H_2O_2 , Hydrogen Peroxide G2307: H_2CO , Formaldehyde SI2205: HF, Hydrogen Fluoride SI2108: HCl, Hydrogen Chloride SI2104: H_2S , Hydrogen sulfide PI2910/PI2920: C_2H_4O , Ethylene Oxide

Suitable for trace gas detection with a specified lower detection limit, for industrial and atmospheric use.

Isotopic analyzers

G2131-i : δ^{13} C of CO₂

G2201-i : $\delta^{13}\text{C}$ of CO_2 & $\delta^{13}\text{C}$ of CH_4

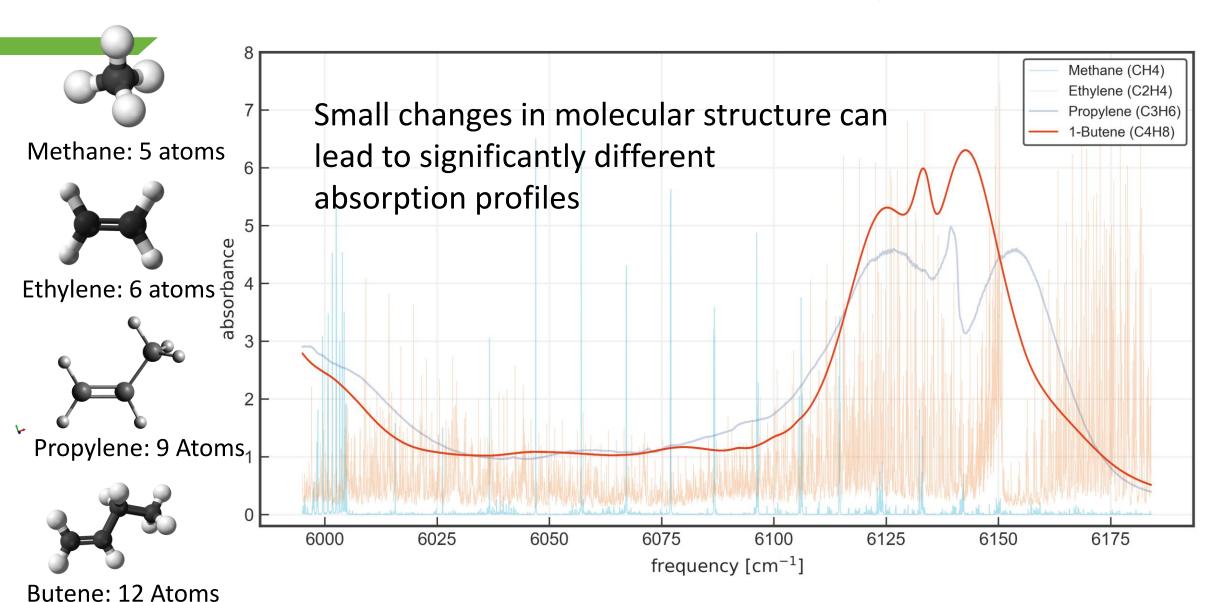
G2210-i : δ^{13} C of CH₄ & [C₂H₆]

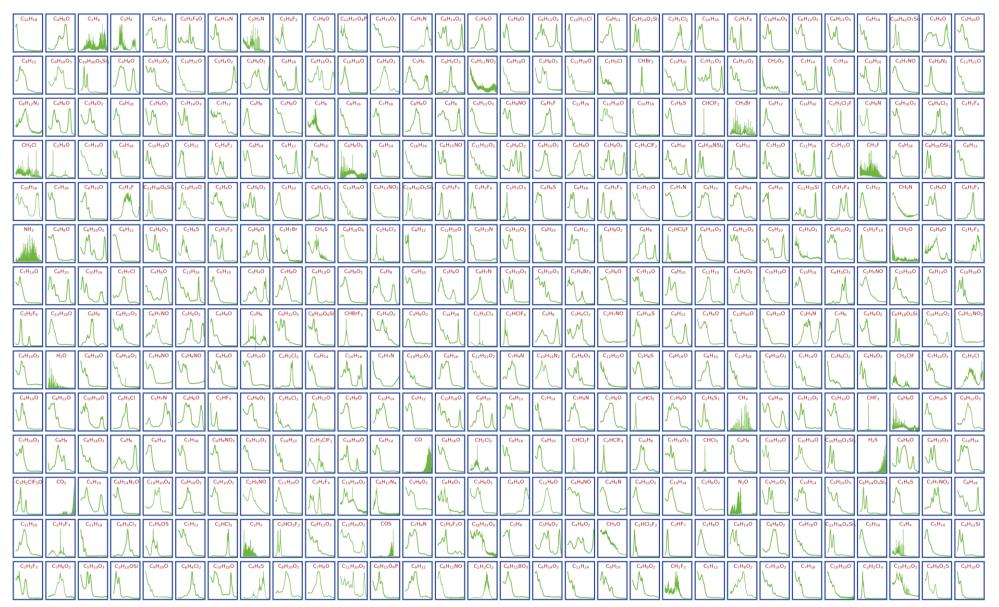
L2130-i : δ^{18} O & δ^{2} H of H₂O

L2140-i : δ^{18} O, δ^{17} O, δ^{2} H & δ^{17} O-excess

Suitable for field-based monitoring and laboratory application, can be used with different peripherals.

Analyzers for Hazardous Air Pollutants




VOC measurements with BB-CRDS

- Development of Broadband CRDS for VOC
 - Analyzer capable of a scanning wide frequency range
 - Up to 40 compounds measured at the same time
 - Measurement interval < 5 sec</p>
- 50x more sensitive than FTIR, 50x faster than GC
- Creating a large VOC library

Multiple VOCs across a wide frequency range

Spectral Library: 600 compounds and counting...

Picarro's Ammonia Analyzers

Model	CO ₂	CH ₄	N ₂ O	H ₂ O	NH ₃
G/SI/PI2103	(s)			(s)	X
G2508	X	X	X*	X	(s)
G2509	X	X	X*	X	X

X: primary measurement

s: secondary measurement

*: additional corrections for NH₃>2ppm

G2509, 5-Species Analyzer

G2509

5 species:

- CO₂ (ppb precision)
- CH₄ (ppt precision)
- N₂O (ppb precision)
- NH₃ (ppt precision)
- H₂O

Optimized NH₃ performance:

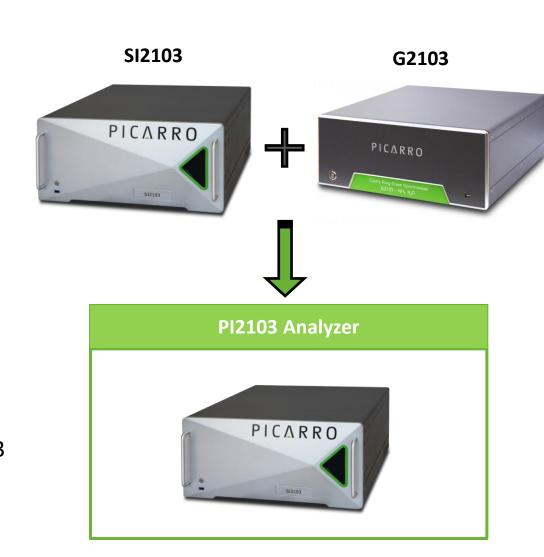
- Response time
 - Coating for sampling handling parts
 - Increased flow rate (1.3 L/min instead of 240 mL/min)
- Accurate ammonia measurements up to 10 ppm
- Extended CH₄ range (up to 800ppm)
- Surrogate gas validation
 - Proven as 'customized G2508' since 2018

Updated water vapor correction for NH₃

Added averaging intervals for N₂O

G2509, 5-Species Analyzer

G2509 Performance Specifications and Typical Performance in Air						
Specification	N_2O	CH₄	CH₄ High Range	CO ₂	NH ₃	H₂O
Precision Raw (1σ)	<25 ppb + 0.05% of reading Typical = 5.0 ppb*	<10 ppb + 0.05% of reading Typical = 0.3 ppb*	<100 ppb + 0.15% of reading Typical = 20 ppb*	<600 ppb + 0.05% of reading Typical = 240 ppb*	<5 ppb + 0.05% of reading Typical = 0.16 ppb*	<500 ppm
Precision 1 min (1σ)	<10 ppb + 0.05% of reading Typical = 1.1 ppb*	<7 ppb + 0.05% of reading Typical = 0.1 ppb*	<40 ppb + 0.15% of reading Typical = 7 ppb*	<300 ppb + 0.05% of reading Typical = 74 ppb*	<3 ppb + 0.05% of reading Typical = 0.07 ppb*	<250 ppm
Precision 5 min (1σ)	<5 ppb + 0.008% of reading Typical = 0.6 ppb*	<5 ppb + 0.02% of reading Typical = 0.1 ppb*	<20 ppb + 0.10% of reading Typical = 3 ppb*	<200 ppb + 0.05% of reading Typical = 38 ppb*	<1 ppb + 0.05% of reading Typical = 0.04 ppb*	<100 ppm
Guaranteed Spec Range	0.3-200 ppm***	1.5-12 ppm	0-800 ppm	380-5000 ppm	0-300 ppb	0-3%
Operating Range	0-400 ppm***	0.5–15 ppm	0-800 ppm	0.02-2%	0-10 ppm***	0-7%
Measurement Rate	<8 secs	<8 secs	<8 secs	<8 secs	<8 secs	<8 secs
Typical Gas Response (Rise-Fall 10-90%, 90-10%)	~8 secs	~8 secs	~8 secs	~8 secs	<2 min**	~8 secs
Report Dry Mole Fraction	Yes	Yes	Yes	Yes	Yes	N/A


G / SI / PI 2103, Single-species NH₃ analyzer

Superior NH₃ performance

- ppt precision (100 ppt, 1- σ in 100 sec*) and lower detection limit
- Virtually no drift (less than ± 0.5 ppb/month)
- Large concentration range (up to 50 ppm with extended range mode)
- Short response times (<1 min for 0-20 ppb)
- Surrogate gas validation of calibration

PI2103: Improved NH₃ analyzer

- Built with the best of the two existing NH₃ analyzers
- Faster (1 Hz) measurements from G2103
- More stable OS (Linux) and upgraded sample handling from SI2103

PI2103, Single-species NH₃ analyzer

PI2103 Performance Specifications	Typical Performance***	Specifications****
Lower Detection Limit (3σ, 300 sec)	0.03 ppb	<0.09 ppb
Zero Drift* (peak-to-peak, 50-minute average)	±0.04 ppb (72 hrs)	±0.15/±0.5 ppb (72 hrs/1 month)
Precision (1σ, 1 sec) Precision (1σ, 10 sec) Precision (1σ, 300 sec)	0.19 ppb 0.058 ppb 0.010 ppb	0.50 ppb + 0.1% of reading 0.17 ppb + 0.05% of reading 0.03 ppb + 0.02% of reading
Measurement Interval	1 sec	1 sec
Response Time (0-20 ppb)** (Rise/Fall Time 10-90%/90-10%)	<2 min	<2 min
Measurement Range	Guaranteed range 0-500 ppb Operational range 0-10 ppm Extended range 0-50 ppm (Optional)	Guaranteed range 0-500 ppb Operational range 0-10 ppm Extended range 0-50 ppm (Optional)

Main Applications for Picarro NH₃ Analyzers

G/SI/PI2103

- Ammonia monitoring at urban and rural stations
- Studying indoor air quality
- Investigating particulate matter formation
- Quantifying livestock emissions
- Quantifying vehicle emissions

G2508

- GHG soil flux studies (recirculation)
- GHG incubation experiments (recirculation)

G2509

- Ammonia monitoring at urban stations
- Quantifying GHG and ammonia emissions of livestock
- Fertilizer studies

Picarro Research Center

• Easily discover publications that are relevant to your research:

www.picarro.com/environmental/research center

Research Center

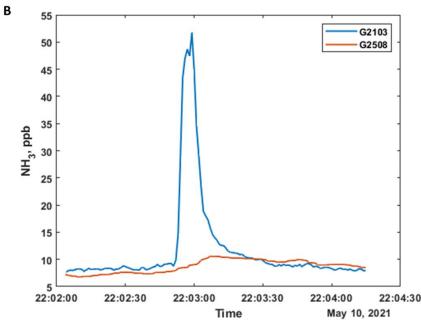
Citations play a crucial role in environmental research. Use this tool to discover credible citations from other researchers achieving scientific excellence with Picarro solutions. Use the product filter to find and download relevant articles and published studies.

Bookmark this page and check back regularly to stay up to date with the latest Picarro-related research

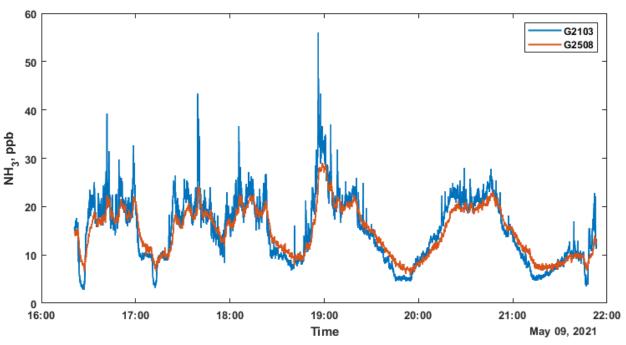
© 2025 Picarro Inc. PIC A R R O

Picarro Customer Support

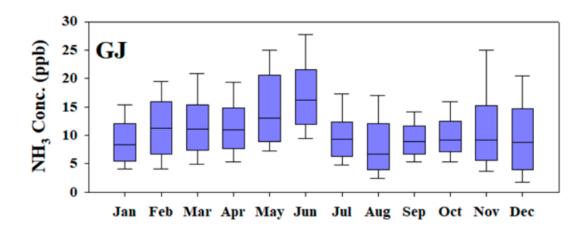
- For any Technical or Application question reach out to Customer Support:
 - •e-mail: support@picarro.com
 - phone: +31 85 888 1650 (international) / +1 408 962 3991 (USA)

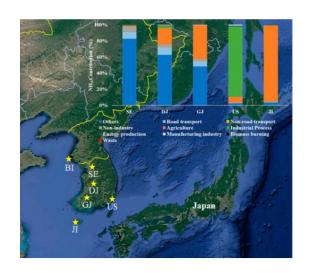

Please provide the following information:

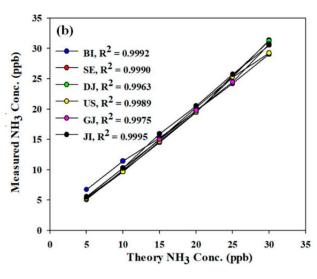
- -Serial number
- Description/overview of setup (analyzer/peripherals/experiment)
- EventLogs and Private Data from time that problem occurred
- Remote Access information (Teamviewer / Anydesk)


Use Case 1: Measuring Boundary Layer NH₃

Flight Campaign


With targeted regions included dense livestock operations, conventional row cropping, and non-developed forests.


A) G2103 data downwind of a cattle feedlot point source, with the source outlined in red. B) Time series of G2103 and G2508 measurements downwind of the same source. G2508 was interpolated to 1 hz by setting values to the most recent G2508 measurement to match the 1hz frequency of the G2103. C) Time series of NH_3 observations from G2103 and G2508


Use Case 2: Ammonia measurements in Korea

- 6 sampling sites
- Teflon tubing (short than 1.5m, heated below 40°C)
- External 47mm Teflon filter, weekly replacement
- Semi-annual calibration (dilution of 10ppm NH₃ standard gas with zero air)

Song et al., 2024, Distribution and Characteristics of Ammonia Concentration by Region in Korea, Atmosphere

Use Case 3: NH₃ Measurements in a Cattle Barn (G2103)

Atmos. Meas. Tech., 12, 2837–2850, 2019 https://doi.org/10.5194/amt-12-2837-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.

Negligible influence of livestock contaminants and sampling system on ammonia measurements with cavity ring-down spectroscopy

Jesper Nørlem Kamp^{1,2}, Albarune Chowdhury¹, Anders Peter S. Adamsen^{1,a}, and Anders Feilberg¹

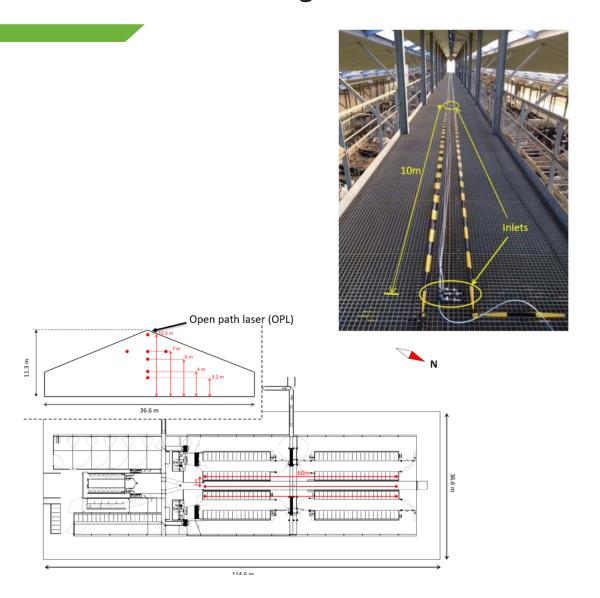
¹Department of Engineering, Aarhus University, 8000 Aarhus, Denmark

²Arctic Research Centre, Aarhus University, 8000 Aarhus, Denmark

anow at: APSA, 8800 Viborg, Denmark

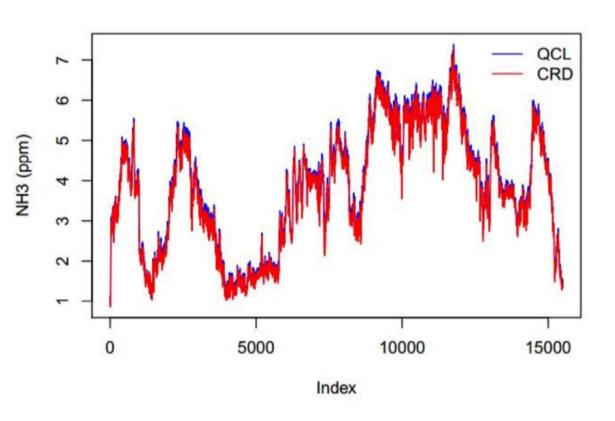
Correspondence: Anders Feilberg (af@eng.au.dk)

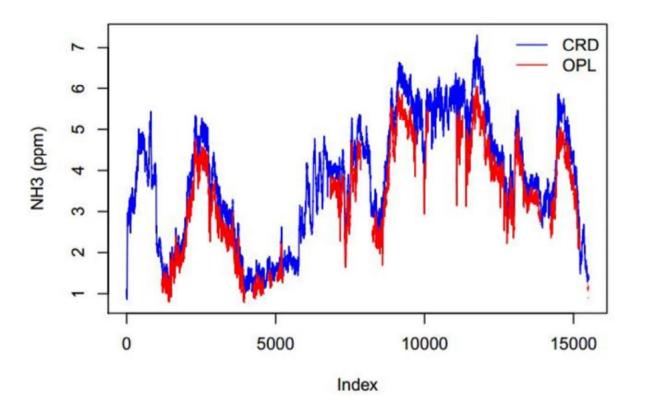
Received: 25 October 2018 – Discussion started: 29 November 2018 Revised: 12 April 2019 – Accepted: 1 May 2019 – Published: 17 May 2019



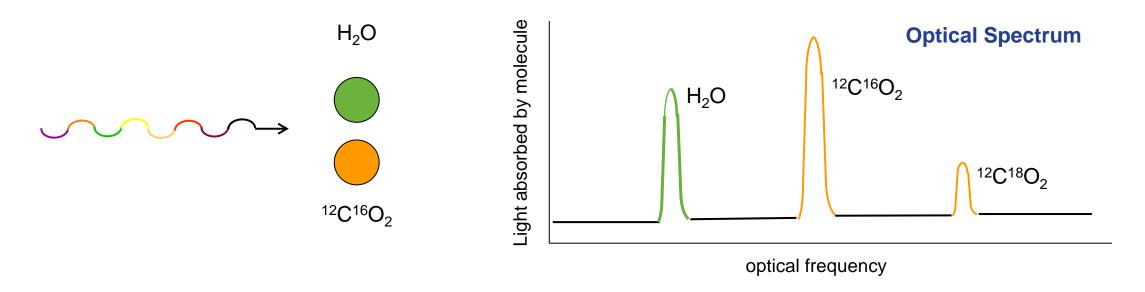
Source: Photo credit Aarhus University, Denmark

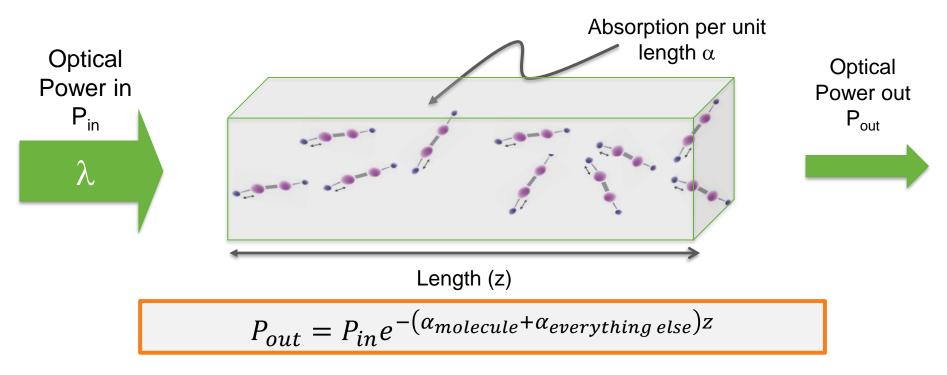
Key findings


- Excellent linearity
- No significant H₂O, CO₂, CH₄ and VOC interferences on NH₃
 data
- Negligible effect of particulate filter
- CRDS analyzer provides fast, precise and accurate observations of NH₃ in cattle barns
- Good response time


Use Case 4: NH₃ & GHG Measurements in a Dairy Barn

- Investigating ammonia abatement techniques for livestock (Flemish research Institute for Agriculture, Fisheries and Food (ILVO) in Belgium)
- G2509 analyzer optimized for ammonia measurements (Teflon sample handling parts, increased flow rate of about 1.3L/min)
- Performance comparison between G2509, an openpath tunable diode laser (OPL) and a closed-path quantum cascade laser (QCL)
- The air was measured at multiple inlets inside the dairy barn

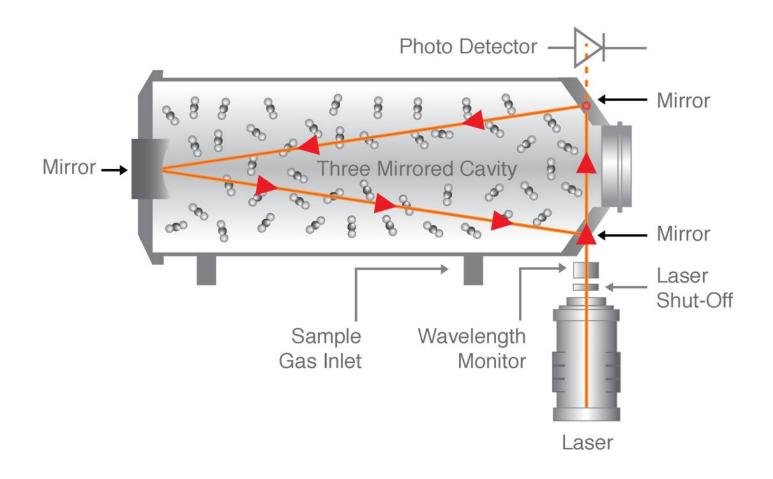

Use Case 4: NH₃ & GHG Measurements in a Dairy Barn


Resonant Optical Spectroscopy

Each type of molecule has a unique optical absorption

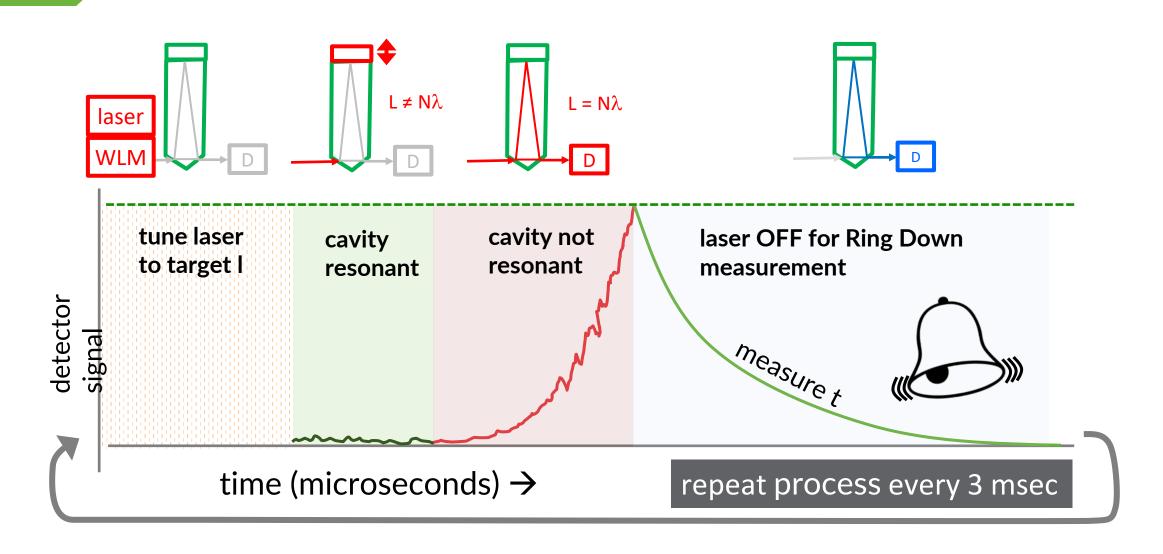
- 1. Molecules absorb at optical frequencies where they resonate mechanically
- 2. A spectrum is measured by changing the frequency of light passing through a sample and measuring the amount of light absorbed
- 3. A spectrum of a given species of molecule usually consists of a number of absorption features
- 4. By measuring an isolated absorption feature of a species, its concentration can be determined

Beer-Lambert Law for Optical Absorption


- Maximize α_{molecule} :
- Minimize $\alpha_{\text{everything else}}$:
- Maximize z:

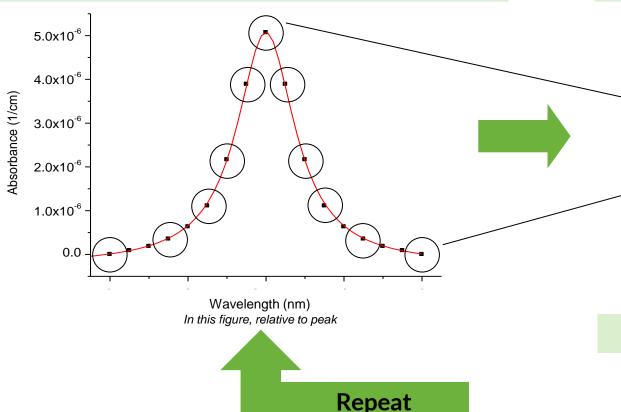
Pick λ where the target molecule absorbs strongly

Pick λ where all the other molecules don't absorb, and take care so that there is no loss of signal in your optics

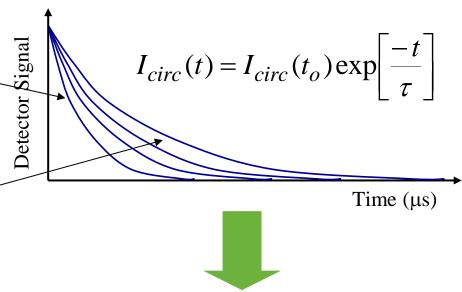

Get the longest path length you possibly can

CRDS: Time, not Absorbance

- CRDS utilizes the unique infrared absorption spectrum of gas-phase molecules to quantify the concentration of (and sometimes isotopes of) H₂O, CO₂, CH₄, N₂O, CH₂O, NH₃, etc.
- Measure decay rate, rather than absolute absorbance
- Small 3-mirrored cavity ~ 35 cc
- Long effective path-length (> 10 km)
- Time-based measurement
- Laser is switched on and off, and scanned across wavelengths


CRDS: Principle of Operation

© 2025 Picarro Inc.


Turning Ring-Down Times into Concentrations

1. Select wavelength using λ -monitor

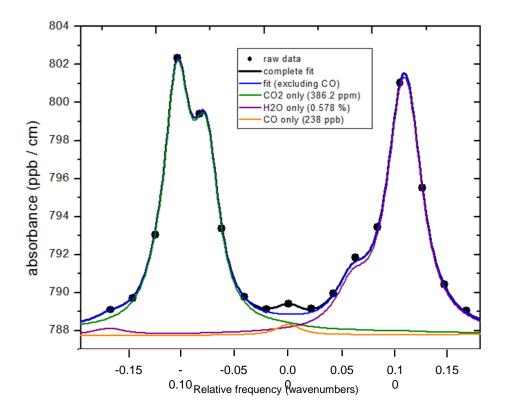
Gas concentration is proportional to the area under the curve, given constant T and P

2. Measure decay time using CRDS

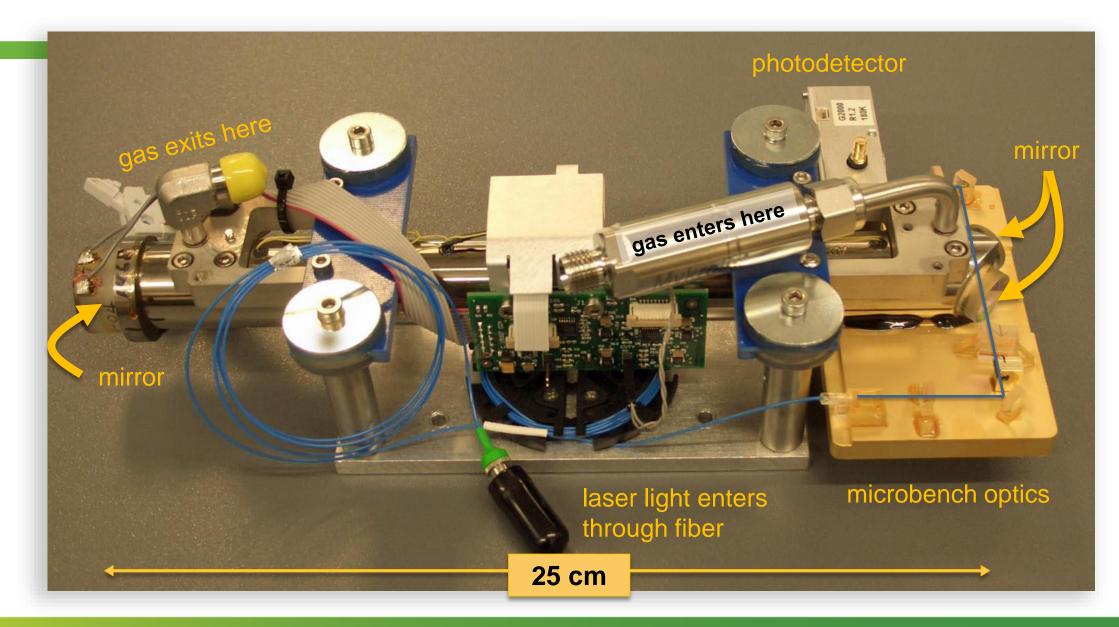
3. Calculate loss (a)

$$\alpha = \frac{1}{c\tau}$$

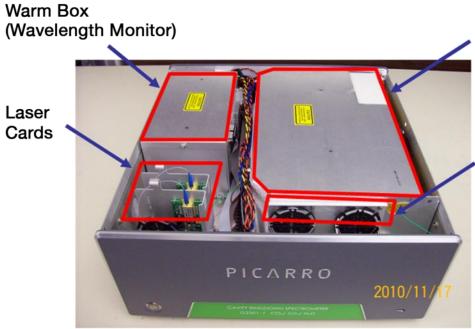
I = light intensity in cavity


c = speed of light

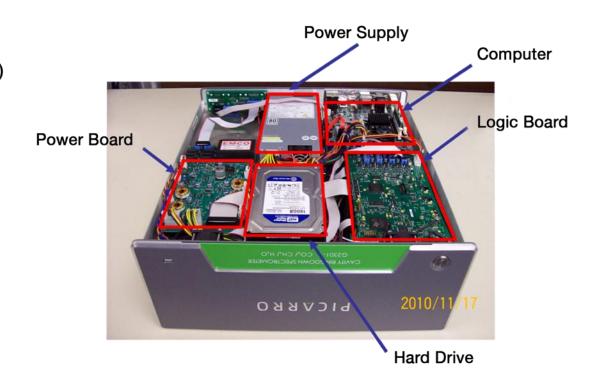
t = cavity ring-down time


a = cavity loss per unit length (ppm/cm)

Generating Stable Spectrograms


- 1. A high-quality absorption measurement
 - CRDS delivers a precise and accurate measurement of the optical loss
- 2. A clean stable frequency axis
 - An accurate and precise tool for determining the laser wavelength
- Precise temperature control
 - Engineered control loops
- Precise pressure control
 - Engineered control loops

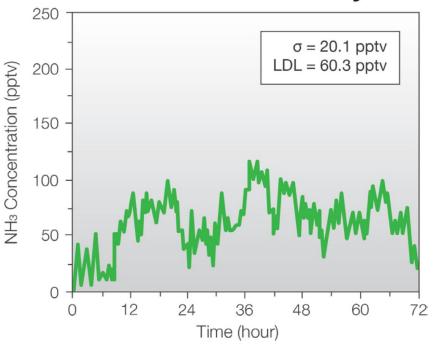
Nuts and Bolts



Inside the Box

Hot Box (Cavity and Sample Handling)

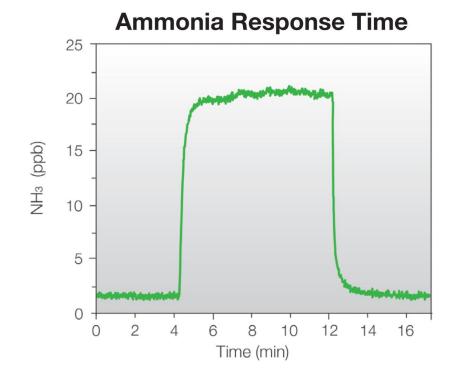
Optical Amplifier



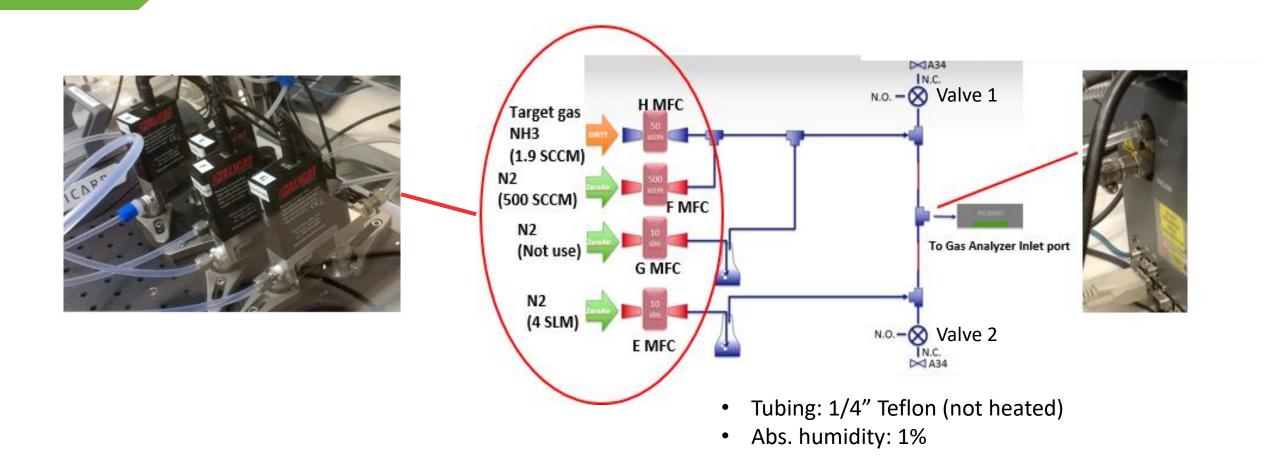
Application Considerations

Surrogate Gas Validation (PI2103/G2509)

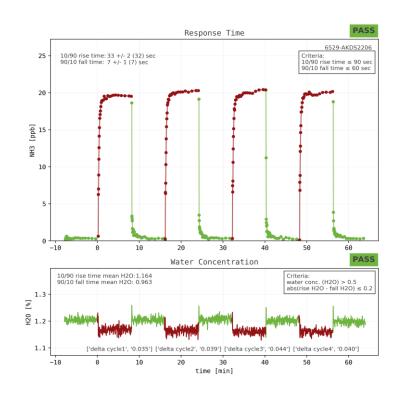
- Wavelength monitor constantly corrects drift (water vapor is measured as reference line)
- Surrogate gas validation (monthly to yearly)
 - Carbon dioxide acts as surrogate gas: non-reactive, easily commercially available, adsorption spectrum adjacent to ammonia
 - Avoids common accuracy issues of ammonia calibration standards (adsorption and stability)
 - Verify zero-drift with zero-air measurement (Phosphoric Acid
 Impregnated Charcoal (PAIAC) as NH₃ scrubber)
- Surrogate Gas Validation Tech Document

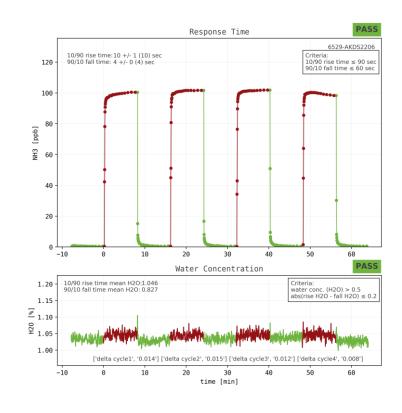

Ammonia Sensitivity

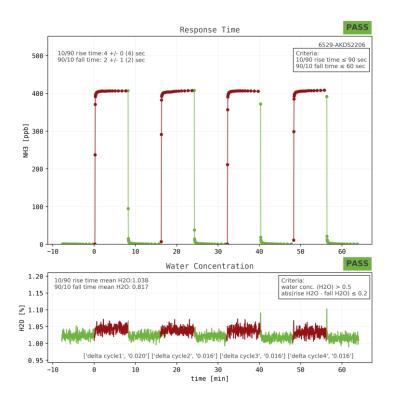
Typical noise zero drift of the PI2103 analyzer over 72 hours.


Analyzer Response Time

- Minimizing dead volumes
 - -Compact measurement cavity of 30mL
- Use of material with low adsorption of NH₃
 - —Teflon/PTFE for tubing and connectors
 - Coatings for stainless steel components
- Increased flow rate (>1.5L/min)
- Response time (0-20ppb), 10-90%, 90%-10 rise/fall time: <2min
- Every analyzer is tested to guarantee the specified response time

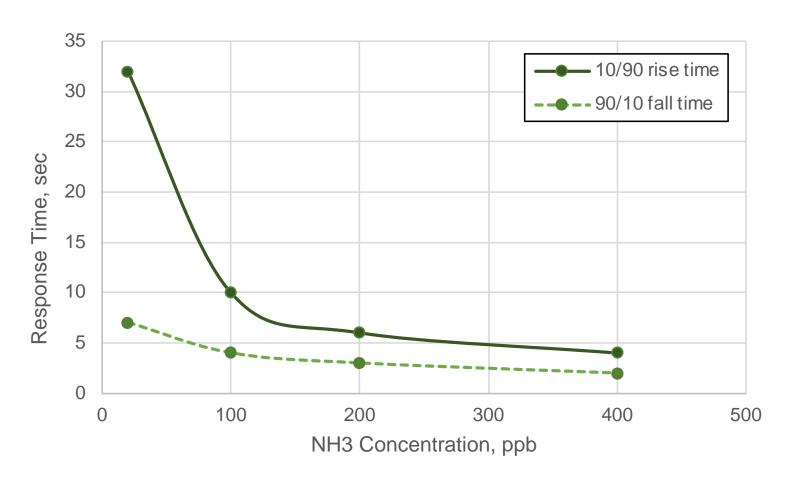

Typical response time for a 10-90% and 90-10% 20 ppb ammonia challenge


Response time testing at Picarro



The sample gas is never in contact with the three-way valves (metal surfaces)!

PI/G2103 response time in humid air (1% H₂O)



20 ppb

100 ppb

400 ppb

PI/G2103 response time in humid air (1% H₂O)

The 10 to 90% response time depends on the NH₃ concentration:

The higher the NH₃ concentration, the faster the response time.

Sample Gas Handling for Ammonia Measurements

- Use appropriate material: PTFE (Teflon), PFA, Silconert 2000 coated, PFTE coated
- Keep inlet tubing as short as possible
- Consider heating sample line tube to ~45°C
- An additional assist pump may be required when working with long tubing
- Note: Ammonia dissolves in condensed water!

Field Deployment

- Transportation
 - —Horizontal position
- Protection against harsh weather conditions
 - —Shelter for instrument, e.g., enclosures
- Battery: Deep cycle battery
- External filter recommended
 - Recommended pore size and frequency of filter replacement varies for applications

UGT ClimBox

Hands-On Training

Topics: Software

- GUI
- User data vs. private data
 - —Instrument Status
 - Outlet valve for troubleshooting
- Data file viewer
- Setup Tool
- Quick introduction to Controller
- Connecting Picarro 16-port manifold or other valve systems
- Analyzer shutdown options

Topics: Inside the Analyzer

- Opening the Box
- Maintenance (Video tutorials: <u>https://www.picarro.com/environmental/environmental-video-tutorials</u>)
 - –Filter replacement
 - –Fan replacement
 - —Replacing Pump diaphragms
- Resetting cables

Consumables G2103/PI2103

Part number hardware	Short description	Frequency
C0360	Drierite	Before shutdown under high humidity levels
-	External particulate filter (3µm)	Depends on particulate load, often every 1-4 week replacement for ambient monitoring
S1021, S3174	Particulate filter (0.45 μ m) (Teflon for NH ₃ , HF, and HCl).	After 12 months, (if higher dust load every 3 to 6 months)
S2068	Complete fan kit	Expected after 3 to 5 years
S2009	External vacuum Rebuild Kit	Expected after ~15'000 hours (approx. 2 years cont. running)

PICARRO

For more information, please visit www.picarro.com
or email info@picarro.com

