Easier Analyzing of Stable Carbon Isotopes of Dissolved Inorganic Carbon in Water Samples or Solid Carbonate Samples: New Picarro Caddy Continuous Flow Interface + AutoMate Prep Device Pairing PICARRO), Jan Woźniak¹, Jason H. Curtis^{2,3} Juan Carlos Guerrero¹ (**OS23E-1469** (1) Picarro, Inc., Santa Clara, CA, USA, (2) University of Florida, Department of Geological Sciences, Gainesville, FL, USA, (3) AutoMate FX, Inc., Bushnell, FL, USA

1. BACKGROUND

Abstract

The Caddy Continuous Flow Interface has previously been used to connect available solid and liquid bulk sample preparation instruments—including the Picarro Combustion Module—to Picarro analyzers for high-precision carbon isotope (¹³C) measurements.

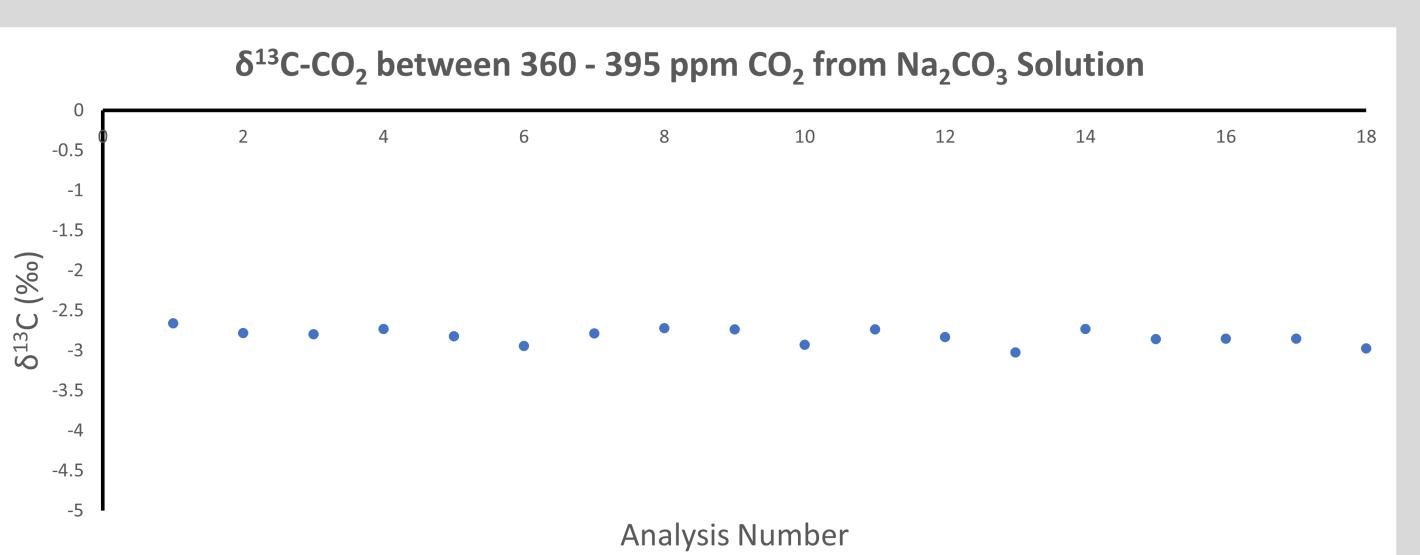
Picarro is happy to announce the AutoMate Prep Device from AutoMate FX as the Caddy's newest pairing. The Caddy's fully automated, low-cost, and simple operation will take advantage of the newest AutoMate Prep Device design improvements to bring together increased data quality and reduced interface complexity.

Here we present some results from tests done with the new Caddy +AutoMate Prep Device pairing, focused on assessing the system's precision at the lower end of our specification range for CO₂ concentrations. The results show the same or at times, improved precision levels and reduced memory effects otherwise associated with the previous interface device. All while making the pairing simpler to set up, easier to operate, and lower in cost.

2. OBJECTIVES

- Determine how well the Caddy + AutoMate Prep Device pairing operates with CO₂ concentrations towards the lower end of our specification range (<380 ppm CO_2) by viewing precision values.
- Assess memory effect between samples to confirm reduced memory effects seen during previous tests.
- 3. Confirm successful "proof-of-concept" tests previously conducted at Picarro HQ.

3. PICARRO CADDY + AUTOMATE PREP DEVICE PAIRING

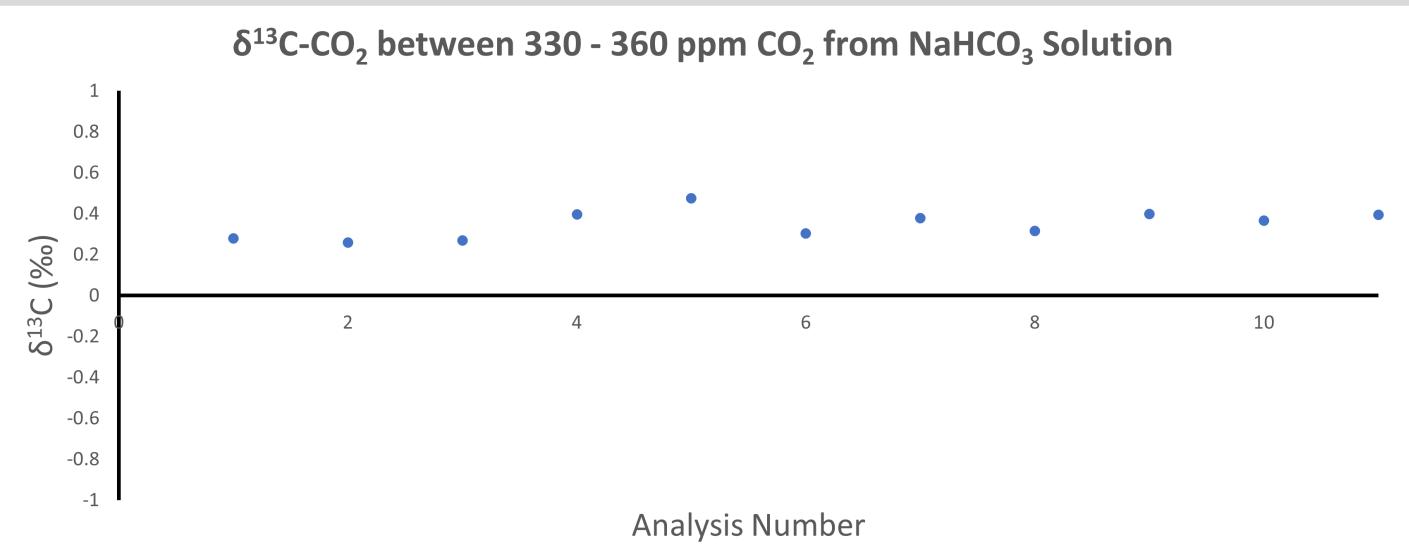

- The Picarro Caddy Continuous Flow Interface + AutoMate Prep Device system is composed of three components:
- 1. Picarro isotopic analyzer (e.g., G2201-*i* or G2131-*i*)
- 2. Picarro Caddy Continuous Flow Interface
- 3. AutoMate Prep Device manufactured by AutoMate FX, Inc.

4. LOW CO₂ CONCENTRATION STUDY

Overview

Dissolved inorganic carbon (DIC) solutions were made by mixing different weighted amounts of either sodium carbonate (Na_2CO_3) or sodium bicarbonate ($NaHCO_3$) to achieve CO_2 concentration values at or near the lower end of the analyzer's specification range. The AutoMate Prep Device adds phosphoric acid to samples to liberate CO₂, which flows to the Picarro for δ^{13} C-CO₂ analysis. These ranged between 360 – 395 ppm CO₂ for Na₂CO₃ solutions and between 330 - 360 ppm CO₂ for NaHCO₃ solutions.

Results – Na₂CO₃ Samples



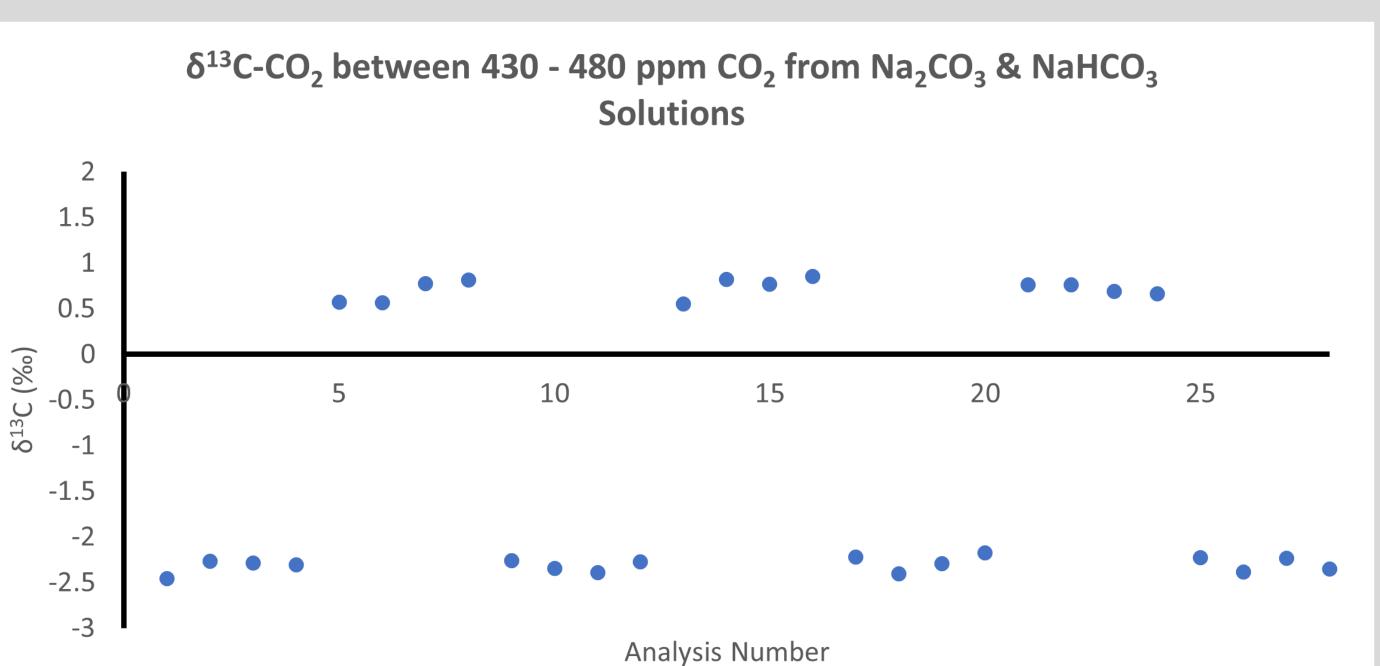
Each sample was analyzed three times. Below is a table showing the averaged results and precision per Na_2CO_3 solution sample.

Sample	Ανg δ ¹³ C (‰)	Precision (‰, 1σ)	Avg [CO ₂] (ppm)
Sample #1	-2.747	0.075	377.3
Sample #2	-2.833	0.107	385.1
Sample #3	-2.749	0.035	370.1
Sample #4	-2.834	0.096	387.9
Sample #5	-2.871	0.148	388.8
Sample #6	-2.892	0.070	384.3

Precision between 0.035 – 0.148‰

Results – NaHCO₃ Samples

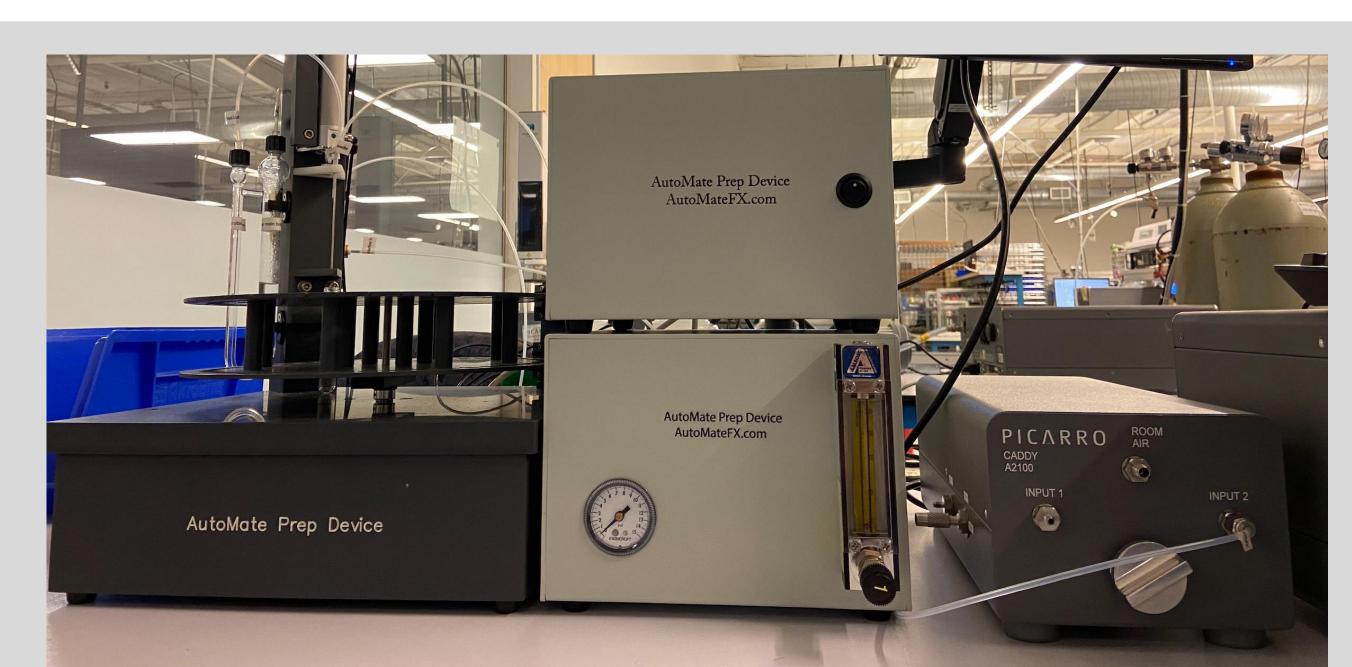
Each sample was analyzed three times, except for Sample #1 due to an error (analyzed twice). Below is a table showing the averaged results and precision per NaHCO₃ solution sample.


Sample	Avg δ ¹³ C (‰)	Precision (‰, 1σ)	Avg [CO ₂] (ppm)
Sample #1	0.2685	0.0134	343.2
Sample #2	0.3797	0.1045	347.3
Sample #3	0.3320	0.0394	339.3
Sample #4	0.3867	0.0180	342.6

Precision between 0.0134 – 0.1045‰

Overview

Dissolved inorganic carbon (DIC) solutions were made by mixing weighted amounts of either sodium carbonate (Na₂CO₃) or sodium bicarbonate (NaHCO₃) to achieve CO₂ concentration values between 430 – 480 ppm CO₂ for Na₂CO₃ and NaHCO₃ solutions. The AutoMate Prep Device adds phosphoric acid to samples to liberate CO₂, which flows to the Picarro for δ^{13} C-CO₂ analysis. Each sample was analyzed four times in an interleaved sample series.


Results

Below is a table showing the averaged results and precision per solution sample.

	C		•			
Sample	Avg δ ¹³ C (‰)	Precision (‰, 1σ)	Avg [CO ₂] (ppm)			
Na ₂ CO ₃ – 1.86 mg #1	-2.331	0.086	449.5			
NaHCO ₃ – 0.9 mg #1	0.681	0.134	439.0			
Na ₂ CO ₃ – 1.86 mg #2	-2.318	0.062	466.7			
NaHCO ₃ – 0.9 mg #2	0.749	0.135	446.8			
Na ₂ CO ₃ – 1.86 mg #3	-2.274	0.101	457.9			
NaHCO ₃ – 0.9 mg #3	0.719	0.051	453.3			
Na ₂ CO ₃ – 1.86 mg #4	-2.302	0.080	452.8			
recision between 0 062 – 0 101 for Na CO samples						

Precision between 0.062 - 0.101 for Na₂CO₃ samples Precision between 0.051 – 0.135 for NaHCO₃ samples

- **0.2‰**, and on average **~0.08‰**.
- inside the previous interface device.

5. ASSESSING MEMORY EFFECT

6. CONCLUSIONS

The Picarro Caddy + AutoMate Prep Device pairing had precision values always better than

The Picarro Caddy helps **remove memory effect**, otherwise associated with the sample bags

The Picarro Caddy + AutoMate Prep Device pairing is an **overall simpler set up** compared to the previous interface device, while also being easier to operate and lower in cost.